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Part 1 

Introduction and 
Proposal

- Fixed block 
signaling issues.

- Why a new 
signaling 
approach is 
needed. 



19th century: 

track circuits 
and colored 

wayside 
signals..

• 19th century: track circuits and colored wayside signals. 
Stop/Proceed.

• Key Innovation: Track-circuit & fixed signals
Electric track circuits detect train presence

• Key Innovation: Colored wayside signals tell drivers “stop / 
proceed.”

• Why this Mattered: First step toward automated safety that 
prevented two trains from occupying the same block.



Fixed Block 
Signaling 

Constraints

Fixed blocks enforce rigid 
spacing.

Conservative safety margins 
slow trains.

Limited real-time data sent to 
the train dispatcher.

Hardware (relays, track 
circuits) aging & 
failure-prone.



Three aspect 
Signaling System 

• Green = 2+ blocks clear (≥2× SBD)  

• Yellow = 1 block clear (≥1× SBD)  

• Red = train ahead in next block  

• Each signal is placed 1 safe braking 
distance (SBD) apart.  

• Track circuits detect presence in fixed 
blocks.  

• System knows train is “somewhere” in 
block — not exact location.  

• This is the basis of fixed-block 
signaling.



Fixed Block Limitation Visualization



Fixed Block 
Limitation 

Visualization

Red blocks = occupied blocks.

Yellow Blocks = buffer zones. 
Trains cannot enter these zones 
neither.

Unused track between blocks 
wastes capacity.

More trains can't enter until block 
clears.





Fixed Block 
Signaling 

drawbacks.

Peak demand exceeds 
~25–27 trains/hour limit. 
Ex. NYCT 7 Line.

Station crowding and 
longer wait times. 
Dangerous and unsanitary 
environment.

Building new tunnels for 
more trains costs billions 
& takes decades. We 
don’t have the space 
neither. 



Fixed Block 
Signaling 

Drawbacks.

• The fixed block signaling 
system's requirement for a 
specific gap between trains 
constrained the track's 
maximum speed limit.

• Fixed block signaling system 
also relied on human operators, 
who could make mistakes and 
cause delays when deciding 
how to move trains.



CBTC 
(Moving 

block 
Signaling) 
Propoaal

GOAL: INCREASE 
CAPACITY ON EXISTING 

INFRASTRUCTURE.

ENHANCE SAFETY & 
RELIABILITY.

PROVIDE PRECISE TRAIN 
LOCATION DATA TO 
TRAIN DISPATCHER

ENABLE HIGHER 
AUTOMATION LEVELS.



Part 2
Fundamentals 

and History

 

Historical Advancements in 
Transit’s signaling system 
leading to CBTC.



What Is CBTC?

CONTINUOUS AUTOMATIC 
TRAIN CONTROL VIA RADIO.

USES MOVING-BLOCK 
SEPARATION.

ENABLES ATP, ATO, ATS 
SUBSYSTEMS.



CBTC Benefits Overview

+20 – 50% 
capacity increase.

Automatic 
protection 
eliminates 
collisions.

Higher service 
reliability; fewer 
signal failures.

Foundation for 
driverless 
operation.



Evolution of 
Railway 

Signaling

• 19th century: track circuits 
and colored wayside signals. 
(Covered) 

• Mid-20th: relay-based ATP 
(Automatic Train Protection) 
Relay based speed 
enforcement. Cab Signaling

•  1980s: first moving-block 
radio systems. Ex. SELTRAC on 
Scarborough RT Toronto 
Canada

• 1990s-2000s: digital CBTC lines 
open. Paris Line, L Canarsie 
Line, High Speed rail, PTC. 



Mid-20th: 
relay-based 

ATP 
(Automatic 

Train 
Protection) 

Cab 
Signaling

• Cab signaling displays signal 
aspects in-cab via coded track 
circuits. (Speed codes)

•  Added overspeed protection and 
richer information than simple 
red/green signals from wayside, 
boosting safety.

• Reduced human error and coded 
in-cab signals gave continuous 
movement authority.



Cab Signaling. 
How it works.

• Track circuit sends coded 
energy through the rails  

• Pickup coils on train 
detect and convert the 
signal  

• Cab equipment displays 
signal aspect in real time  

• Driver must acknowledge 
restrictive aspects  

• If not acknowledged: 
automatic braking in 8 
seconds



Automatic  Train 
Protection with 
Cab Signaling.

• Automatic train 
protection (ATP) with 
distance-to-go profile 
system.

• Train’s permitted speed 
gradually decreases as 
it approaches the end 
of its movement 
authority, ensuring a 
controlled and safe 
stop.



Cab signaling 
further 

advancments

• Speed enforcement via onboard Brake Assurance 
(BA)  

• BA device verified actual braking using motion of 
mercury tube  

• Reduced need for wayside signals (ABS)  

• Digital track circuits enabled Distance-to-Go 
(DtG) cab signaling  

• Binary FSK modulation used to transmit speed + 
target info  

• Train calculates its own braking profile using 
onboard data



1980s: 
Moving 
Block 
Radio 

Systems.

• 1980s: first moving-block radio systems. Ex. 

SELTRAC The Vancouver SkyTrain (1985). First 
moving-block CBTC system deployed  

• SELTRAC installed on Toronto Scarborough RT 
(1985)  

•  Used radio communication and odometry instead 
of track circuits  

•  Enabled dynamic train separation and real-time 
movement authority  

•  Foundation for modern CBTC systems



1985: SELTRAC

• SELTRAC introduced 
dynamic, moving-block 
signaling  

• Train separation calculated 
in real time — no fixed 
blocks  

• Continuous bi-directional 
communication via 
inductive loop  

• Onboard ATP enforced 
braking curve from control 
center  

• First deployed on Toronto 
Scarborough RT and 
Vancouver SkyTrain (mid-
1980s)



SELTRAC Moving 
Block 

Architecture.

• • SELTRAC architecture: 
vehicle-based control + 
inductive loop 
communication  

• • VOBC calculates location 
from odometry, 
transponders, and radio link  

• • Zone Controller (VCC) 
sends movement authority 
via loops  

• • No fixed blocks—
continuous moving-block 
enforcement  

• • Installed on Scarborough 
RT and Vancouver SkyTrain 
in mid-1980s



1990s-2000s:Par
is Line 1998

•  First full CBTC deployment: 
Paris Line 14 (1998), GoA4  

•  Onboard ATP: enforces 
speed limits and safe 
braking  

•  ATO: controls acceleration, 
cruising, and precise station 
stops  

•  ATS: manages schedule, 
dwell times, and passenger 
info  

•  Full radio-based, high-
resolution train localization  

• Eliminated trackside signals 
and enabled driverless 
operation



1990s-2000s: 
CBTC in NYCT

• First CBTC deployment in 
North America: NYC 
Subway L Line (2009)  

• Siemens Trainguard MT 
system implemented  

• Enabled 20% increase in 
train throughput  

• Reduced signal-related 
delays and improved on-
time performance  

• ATO GoA2: Operator 
remains onboard for 
door and safety 
monitoring



1990s-2000s: 
CBTC in High-
Speed rail and 

PTC

• • 2003: Shanghai Maglev launches with CBTC to support 430 
km/h operation  

• • 2018: Research proposes CBTC + PTC hybrid integration for 
U.S. rail  

• • CBTC enables real-time control and speed commands  

• • PTC ensures train stops if limits or signals are violated  

• • Combined systems enhance safety and operational 
efficiency



Part 3 CBTC 
System 
Architecture 
and 
Operation

Deep dive 
into 
subsystems 
and moving 
block logic. 



Grades of 
Automation 
(GoA) 
Overview

GoA 1 Manual driving with 
ATP safeguard

GoA 2 Semi-automatic – ATO 
drives, driver monitors

GoA 3 Driverless – attendant 
on board

GoA 4 Unattended – fully 
automated



IEEE 1474 Standard – Foundation for 
CBTC Automation

Establishes CBTC 
performance and 

functional standards 
(GoA 1-4).

Core principles: 
precise location, 

continuous 
communication, vital 

safety logic.



GoA 1 – 
Manual + 

ATP

Driver controls traction & 
braking.

ATP enforces speed & 
authority.

Common in legacy 
systems and during CBTC 
transition.



GoA 2 – 
Semi-Automatic

ATO handles speed 
profile & stops.

Driver supervises 
doors & emergencies.

Widely used on early 
CBTC upgrades.



GoA 3 – 
Driverless 
Operation

No driver; attendant may 
ride for passenger 
service.

System handles all 
driving functions.

Example: Vancouver 
SkyTrain (normal ops).



GoA 4 – 
Unattended 

Train 
Operation

Fully automated with 
platform screen doors.

Central control oversees 
multiple trains. Enable 
headways under 90 seconds.

Example: Paris Line 14, 
Copenhagen Metro.



CBTC System 
Architecture Key 

Components

Train-borne subsystem: VOBC, 
odometry, ATP/ATO logic  

Wayside Zone Controller (ZC): assigns 
movement authority  

Operations Control Center (ATS): 
manages schedules and supervision  

Data Communication System (DCS): 
radio link + fiber backbone



CBTC System 
Architecture 

Block Diagram



Train-Borne 
Subsystem

• Vehicle Onboard Controller (VOBC) – dual redundant  

• Odometry Sensors – tachometer, IMU, Doppler radar  

• Radio Transceiver – wireless link to wayside DCS  

• • Human-Machine Interface (HMI) – for operator supervision  

• • Safety-critical ATP/ATO logic onboard



Localization 
Accuracy and 

Spacing Margins

• Odometry drift corrected by 
transponders (beacons)  

• Beacons placed ~300–400 m 
apart for ground truth reset  

• Error between beacons may 
accumulate up to ±2 m  

• Safety margin (SBD) includes 
worst-case error + brake 
distance  

• Final spacing = SBD + 
localization margin + system 
tolerance



Localization 
Accuracy and 

Spacing Margins

• Spacing = SBD + localization error + 
system delay  

• Example:  

• Safe Braking Distance (SBD) = 110 m  

• Worst-case odometry drift = ±2 m  

• Delay margin = 1.5 m  

• Required spacing = 110 + 2 + 1.5 = 
**113.5



Wayside Zone 
Controller (ZC)

• Computes safe Movement Authority (MA) 
for every train, 1–10 Hz

• Interfaces with Computer Interlocking (CI) 
to verify switch & route status

• Exchanges status with ATS/OCC for 
headway and dwell-time control

• Dual-computer, hot-standby design (SIL-
4) for fail-safe redundancy



Computer 
Interlocking 
(CI) – Saftey 
Gatekeeper

• Verifies switch & signal 
alignment before MA 
issued  

• Locks conflicting routes, 
releases once train clears  

• Independent SIL-4 logic 
(vital programmable 
controller)  

• ZC requests → CI checks 
& grants “route proven” 
status



Thales Route 
control

• Redundant CPU cards 
(Upper shelves). Dual hot-
standby logic; one falls -> 
the other takes over.

• Vital I/O modules (middle). 
Field contacts for point 
machines, signals, track 
circuits

• Relay / interface blocks 
(lower) Fail-safe output: 
de-energize-to-safe for 
points & signals

• Trackside cabinet + signal 
mast: Shows the CI located 
near the turnout it 
protects. 



Data Communication System 
(DCS)

•  Dual-band CBTC Wi-Fi (5 GHz + 2.4 
GHz fallback) or LTE/5 G option  

• Overlapping trackside APs – 
seamless hand-off < 50 ms (vital 
traffic)  

• Redundant fiber ring backbone – 
self-heals in < 50 ms  

• QoS: vital packets < 100 ms round-
trip; non-vital best-effort  

• MIMO / cooperative relaying boosts 
tunnel reliability



Operational 
Control 

Center (ATS)

• Real-time train map with 
predicted arrivals  

• Regulates headways by 
sending speed/dwell 
commands  

• Manages incident response 
& degraded-mode scenarios  

•  Interfaces to passenger 
information & CCTV systems  

• Generates performance 
reports for service planning



ATS: Schedule Regulation Tools

Live headway tracker flags gaps 
> ±10 s  

ATO speed offset (± 3 km/h) 
smooths the gap  

Dynamic dwell extension / 
hold at next station  

“Skip-and-fill” option during 
heavy disruption  

Results: 20 % reduction in 
bunching delays (NYC L-line 

data)



ATS: Incident 
Management 

in a CBTC 
world

• Detects track-circuit failure → flags affected block in <5 s  

• Automatically re-routes trains via crossover 17 / track 2  

• Issues stop-and-proceed ​order to nearest train (safe speed 15 
km/h)  

• Short-turns trailing trains to prevent bunching at terminals  

• Pushes realtime alerts to PIDS, staff tablets & maintenance 
crew



Automatic Train Protection (ATP) How the algorithm 
works.

• Computes safe-braking curve:  v² = v₀² – 2 a (x – x₀)  

• Adds safety margin:  MA = SBD + loc error + delay buffer  

• Monitors distance-to-go each 100 ms (≤ ±0.3 m resolution)  

• Cuts traction & applies service brake when curve touched  

• Triggers emergency brake if MA is exceeded (fail-safe)



ATP: Movement 
Authority Logic

•  MA = position of 
leading train – safe-
braking envelope  

•  ATP updates curve 5–
10 Hz; envelope 
“slides” with leader  

• Following train sees 
shrinking distance-to-
go in real time  

•  Loss of comms ⇒ MA 
frozen to restrictive 
value (fail-safe)



ATP: Overspeed Protection “Adaptive cruise 
control” for Trains. 

• Continuously compares actual speed to permitted curve  

• 3-step response: audio-visual alert → service brake → 
emergency brake  

• Curve adapts to gradient, mass, adhesion & MA length  

•  Conceptually like car ACC: maintains safe gap & enforces max 
speed



Automatic Train Operation 
(ATO) Precision Driving 

Benefits

• Executes target speed profile with ±0.1 
m/s accuracy  

• Uses coast phases & regen braking → 
5-10 % energy savings  

• Consistent station stops within ±30 cm 
of mark  

• Reduces dwell-time variance → 
smoother headways  

• Minimizes wear on brakes & wheels



ATO: Comfort 
and Efficiency

• Smooth accel ≤ 1.3 
m/s², decel ≤ 1.0 m/s²  

• Cruise-coast-brake 
profile saves 5-10 % 
energy  

• Precision stop within 
±30 cm enables PSDs  

• Consistent ride → 
lower motion-sickness 
reports



ATO: Dynamic 
Dwell & Door 
Coordination

• Auto-aligns car doors with PSDs (±30 
cm)  

• Real-time passenger count adjusts 
dwell ±5 s  

• ATS can hold or release doors to 
smooth headways  

• Door status + crowd level reported 
instantly to OCC



Moving Block 
vs Fixed 

Block. Why 
CBTC Packs 
more trains. 

• Fixed block = track divided into rigid 300-800 m sections  

• Only one train per block → long empty gaps at low speed  

•  Moving block = “safety envelope” slides with each train  

• Separation limited only by safe-braking curve, not block 
length  

• Up to 30 % capacity gain on the same infrastructure



Moving vs Fixed Block Visualization



Safe Braking 
Distance 

Calculation

• Core physics:  d  =  v² ⁄ (2 aₛₑᵣᵥ)  +  margin  

• Margin = odometry drift + comms delay + 5 % adhesion loss  

•  Gradient modifier: add / subtract g sin θ term  

• “Overlap” (5–10 m) appended for worst-case brake failure



Capacity Impact 
Example

• Legacy fixed-block (600 
m) → 25 trains / h  

• CBTC moving-block 
(120 m SBD) → 40 
trains / h  

• +60 % throughput on 
same two-track 
corridor



Part 4. Deployment and 
Intergration



Greenfield 
vs 

Brownfield 
CBTC 

Projects

Greenfield – Built from scratch; CBTC 
embedded day-1  

▸ Typical timeline: 4-6 y design-build-
commission  

▸ Lower integration risk, single vendor stack  

▸ Cap-ex ≈ US $30-40 M/km (incl. civil works)

Brownfield – Retrofit on an operating line  

▸ Phased migration & dual signalling until cut-
over  

▸ Timeline 7-10 y (night/weekend outages)  

▸ Higher O-pex during parallel run; cap-ex ≈ 
US $12-20 M/km



CBTC Overlay Strategy. Upgrade Without Shutting 
the Line

• New CBTC equipment installed while legacy signals stay live  

• “Shadow running” 3-6 months – CBTC monitors but does not 
control  

• Segment-by-segment weekend / overnight cut-over windows  

• Legacy kept as fail-safe fallback until full line commissioned



Mixed Operations 
Challenges

•  Legacy train = fixed-block mode; 
CBTC train = moving block  

•  Must apply least-common-
denominator headway → 
capacity penalty  

• Dual wayside beacons & overlay 
logic ⇒ ↑ maintenance & fault 
points  

•  Interlocking safety case doubles 
in complexity  

•  Agencies aim to limit mixed 
period to <12 months



“Big-Bang” Cut-
Over – Paris Line 

1 Case Study

•  Entire fleet (MP 05) fitted; legacy 
drivers re-trained  

•  CBTC shadow-run 9 months with 
zero passenger impact  

•  Overnight switch-over 26 Jan 
2013; legacy reached safe-state, 
CBTC became vital  

•  Achieved GoA 4 next morning – 
no fallback required



Testing & Commissioning-
Staged Validation Path

•  Factory Acceptance Test (FAT) – 
hardware & software bench-tested  

•  Site Acceptance Test (SAT) – power-
up & static I/O checks on track  

•  Dynamic nighttime runs – no 
passengers, verify braking curves  

•  Shadow operation – CBTC 
calculates MA while legacy controls 
train  

•  Trial service – passengers aboard 
with safety staff riding, 30-90 days  

•  Safety Case approval by regulator 
→ revenue GoA level granted



Training & Change Management. 
The “Soft” Success Factors.

• Up-skill drivers → attendants: 
simulator + GoA 2 in-cab drills  

• 10-week maintainer programme: 
VOBC swap, ZC diagnostics, DCS RF 
survey  

•  Public-facing campaign: “Trains 
now run automatically—stand clear 
of doors”  

•  Emergency procedures rewritten 
for unattended operation (GoA 4)



NYC Subway CBTC 
Program. – Scale 

of the Retrofit

• World’s oldest large metro 
(opened 1904); 1,000 km of track  

• Completed: L (2009) & 7 (2018) – 
40 tph and 32 tph peaks  

• In progress: Queens Blvd, 8th 
Avenue Fulton Avenue, Astoria 
corridors  

• $7 B in 2020-2024 & 2025-2029 
capital plans; target full network 
by 2045  

•  Requires weekend outages + 
overlay; ~15 km commissioned 
per year



Canarsie Line (L) 
– Project 

Timeline & 
Milestones

• 1999 – Contract lent to Siemens 
for Trainguard MT CBTC  

• 2000-2004 – Wayside install 
nights/weekends; VOBC retrofit 
on 212 cars  

• Sept 2005 – First shadow-run 
segment (Rockaway Av–
Broadway Jct)  

• Sept 2006 – Full-line shadow 
complete, legacy coded-cab still 
vital  

• 20 Sept 2009 – Weekend cut-
over; revenue GoA 2 service 
begins Monday  

• 2012 – Headway cut to 2 min 15 
s (40 tph); on-time performance 
+12 %



Canarsie Line – 
CBTC Performance 

Gains

• Peak throughput +15 % (18 → 20 tph)  

• On-time performance 75 % → 90 % (+15 pp)  

• Signal-related delays cut 80 % (250 → 50 
incidents / yr)



Flushing Line (7) – Lessons Learned 
from a tougher Retrofit. 

Different vendor (Thales) + dual-routed interlockings  

Integration & software-sign-off slipped 18 months 
(2016→2018)  

Added “countdown clocks” and real-time dwell-
optimizer after go-live  

Reliability now rivals Canarsie: OTP 89 % vs 90 % on L



NYC CBTC – Interoperability Plan

Two supplier stacks today 
(Siemens + Thales) run on 
isolated corridors  

2025 spec: “Train-Borne 
Controller Common 
Interface” for new fleets  

RF band & message-format 
convergence planned for 
QBL / Culver overlap  

Goal 2035: any CBTC-
equipped consist can roam 
system-wide



Paris Metro. 25 years of GoA 4 

RATP twin-track strategy: build 
Line 14 as GoA 4 baseline

1998

Retrofit pilot: Line 1 big-bang 
conversion completed

2012

Lines 4 & 11 mid-upgrade; Line 18 
automated from outset

Today

Network target: 20 % trains 
driverless by 2030

2030



Paris Metro Line 14 
– Greenfield 

Success

• Built GoA 4 from day 1; platform-screen doors integral  

• Designed for 85–90 s headways ⇒ 42 tph theoretical  

• MP14 eight-car sets add +30 % capacity vs MP05  

• Success triggered north & south extensions (2020–
2024)



Paris Line 1 – 
Brownfield 
Conversion

•  2010-2012: retrofit of  106-year-old line while carrying 725 k 
riders/day  

•  Entire MP05 fleet dual-fitted for CBTC + legacy SACEM during 
shadow run  

•  01:00–05:00 weekend windows replaced 1500 balises & 5 
interlockings  

•  Post-GoA 4: peak capacity 30 → 45 tph (+50 %), dwell-time 
variance −40 %



Paris Line 4 & 
Future 

Projects

• Line 4 brownfield GoA 4 hand-over July 2022 (week-night cut-
overs)  

•  Lines 6 & 11 mid-conversion; service maintained via dual-
equipped MP89/MP14  

•  New Grand Paris Express Lines 15–18: all CBTC from day one  

•  RATP vision 2030: > 60 % of train-km in unattended 
operation



Beijing Metro 
Fast-Track CBTC 

Deployment

• First GoA 2 line (Airport Express) 
entered service 2008  

• 2023 status: 17 of 27 lines now 
CBTC-equipped (Siemens, Thales, 
Bombardier)  

• Network carries > 10 million trips 
/ day; 840 km route length  

• Typical brownfield corridor 
finished in < 36 months thanks to 
nightly block-hours



Beijing Line 10 – 
World’s longest 

CBTC Loop

• 57 km ring with 45 stations; 
Siemens Trainguard MT 
(GoA 2)  

• Peak headway 90 s; normal 
service 2 min even across 
junctions  

• 2014 LTE roll-out caused 2.4 
GHz radio drop-outs → 
migrated to 5.8 GHz & 
added directional antennas  

• After spectrum fix: Radio 
failure rate ↓ 87 %, 
punctuality back above 96 %



China’s 
CBTC 

Strategy

• Since 2015, every new Tier-1 
metro line is specified at least 
GoA 2; most greenfields GoA 4  

• “Multiple-vendor, local-license” 
policy keeps Siemens, Thales, 
Bombardier and CASCO 
competing  

• Tech-transfer clauses require ≥ 
70 % onboard & wayside 
hardware to be manufactured in-
country  

• Older fixed-block lines upgraded 
corridor-by-corridor to maintain 
10-year capex cycles



Global CBTC 
Adoption 

Snapshot (2024)

• 85+ fully-automated (GoA ≥ 
3) metro lines now in 
service worldwide  

• > 1 500 route-km of CBTC 
commissioned since 2010; a 
further 900 km under 
construction  

• CBTC is the **de-facto base-
spec** for every green-field 
heavy-metro project 
approved after 2020  

• Largest brown-field 
upgrades: New York (425 
cars retro-fitted), Paris (Line 
1 & 4), Beijing Line 1



Part 5 Design 
Considerations
+ Future 
Trends



Fail-Safe Design Philosophy

Failure mode Likely cause
Detection / 
diagnostic

Automatic safe 
reaction

Dangerous 
failure rate (λᵈ)

CPU-A clock 
stops

Component 
ageing, thermal 
stress

Hardware 
watchdog not 
stroked within 
100 ms

Brake-apply 
relay de-
energised, 
VOBC drops to 
“restricted”

1.2 × 10⁻¹⁰ h⁻¹

Channel A  B 
telegram CRC 
mismatch

Transient EMI 
on back-plane 
bus

16-bit CRC 
comparison 
every 50 ms

Both CPUs 
invalidate 
movement-
authority; train 
coasts to stop

3.4 × 10⁻¹⁰ h⁻¹

Brake-release 
relay welded 
closed

Contact 
welding after 
high inrush

Dual-relay 1-
out-of-2 vote 
disagrees

Second relay 
opens; 
pneumatic 
brakes remain 
applied

8.0 × 10⁻¹¹ h⁻¹



CBTC 
Cybersecurity 

Standards

• IEC 62443 “zones & conduits” 
model segments wayside, radio 
and VOBC networks  

• CENELEC TS 50701 adapts 62443 
for rail-specific threats and ties 
security levels (SL) to SIL targets  

• Layered defence-in-depth: 
trackside firewalls → DMZ → 
whitelisted VOBC endpoints  

• Continuous risk assessment; 
patches validated like safety-
critical software changes



Communication 
Network Redundancy

• Dual fiber rings (< 50 ms self-
healing) keep the OCC⇄wayside 
backbone alive after any single 
break.

• Trackside Wi-Fi/LTE radios in A/B 
pairs give every train two 
simultaneous RF paths. 

• Automatic “make-before-break” 
switchover is transparent to 
onboard VOBCs



Localization Error & Margin

600 m run — 
worst-case 400 m 
between beacons  

Odometry drift 
±0.1 % ⇒ ±0.6 m 
(0.001 × 600 m)  

Fail-safe overlap 
adds 8 m buffer  

Total clearance = 
0.6 m + 8 m ≈ 8.6 

m (≈ 9 m envelope)



Power & 
Environmental 

Hardening
• 30-min runtime UPS in 

every wayside cabinet 
(ride-through brown-
outs)  

• Components qualified –
25 °C … +55 °C to EN 
50155 T3 / IEC 60571  

• Enclosures sealed ≥ IP54 
(EU) / NEMA 4 (NA); 
conformal-coated PCBs  

•  Fans & heaters with 
thermostat-controlled 
duty cycle < 30 % 
(energy) 



Zone Controller Redundancy

Dual redundant 
Zone-Controller pair 
(hot-standby 2oo2)

Physically separate, 
fire-rated racks

Automatic 
switchover < 50 ms 
on heartbeat loss

On-line self-test 
every 2 s; MTTR 
design target ≤ 4 h



Vital Onboard Controller Redundancy

Dual VOBCs run 2-out-of-2 vital voting  

Separate tachometers, IMUs & A/B antennas  

Failed channel auto-isolates—train keeps authority  

Vital relay drop-out forces safe brake if disagreement >2 
km/h



Graceful Degradation Mode

• ATO channel drops → driver takes over 
(ATP still vital)  

• Radio link lost > 5 s → emergency brake, 
restrictive mode  

• Zone-controller failure → adjacent ZC 
grants 25 km/h authority  

• Manual fallback keeps ≤ 40 % service until 
fault cleared



Network Segmentation 
& Zones

• - Enterprise IT zone strictly 
separated from railway OT  

• - Grey DMZ buffers traffic & 
applies deep-packet inspection  

• - Blue safety-critical signalling 
zone accepts *only* vital 
protocols  

• - CCTV / ancillary systems isolated 
in gold zone  

• - Firewalls implement IEC 62443 
“conduit” least-privilege rules



Access Control & Authentication

Unique operator & maintainer 
accounts — MFA required for 

every remote log-in

Least-privilege, role-based 
permissions enforced on ATS / 

zone controller

Secure-boot chain + signed 
firmware prevent rogue code 

on vital CPUs



Monitoring & Incident Response

• OT-aware IDS (e.g., Cisco Cyber Vision) baselines CBTC traffic 
and flags anomalies in <10 s

• Central SIEM (Splunk / QRadar) correlates logs from ZC, ATS & 
firewalls for Tier-1 SOC triage

• Pre-built IR playbook: isolate radio AP VLAN, switch to backup 
channel, verify ATP heartbeat

• 24 × 7 SOC drills quarterly tabletops using real events (e.g., 
MTA 2021 & SFMTA 2022 ransomware)

• NIST 800-82 and IEC 62443-3-3 both stress continuous 
monitoring.



AI/ML in Predictive Maintenance

Rail IoT gateway streams axle-
box vibration & CBTC radio KPIs 

to cloud every 60 s

Gradient-boost ML model flags 
anomaly score > 0.85 ⇒ “AP-

fail-in-7 days” ticket

Dashboard (Grafana-style) 
shows heat-map of AP MTBF & 

trend line of bearing RMS g

Pilot on 40 trains cut radio 
outages 40 % & saved ≈ 2 h 

mean-time-to-repair per event



AI/ML for Dynamic Scheduling

Cloud-based optimizer re-forecasts headway every 30 s 
using live APC counts & Bluetooth-probe demand heat-map

Algorithm elongates dwell ± 10 s at overloaded stations and 
simultaneously issues ±7 km/h cruise tweaks to trailing 
trains

Pilot on Hong Kong MTR Tuen Ma Line (Dec-22 → Mar-23) 
cut worst-case platform crowding by 18 % and saved 5 % 
traction energy



5G & FRMCS for CBTC

• Release-18 FRMCS on 700 MHz/1900 MHz 
gives < 10 ms URLLC + 99.999 % availability 
for CBTC traffic

• Coverage economics – 5 G small-cells @ ≈ 
250 m spacing (-95 dBm) vs Wi-Fi 6 APs @ 70 
m; 5 G needs ≈ 3 × fewer trackside sites

• TCO snapshot (10 km guideway) : Wi-Fi 
CAPEX ≈ US$ 1.9 M + OPEX $ 420 k/y; 5 G 
neutral-host lease ≈ $ 2.4 M upfront but OPEX 
drops to $ 240 k/y (-43 %)

• Use-cases unlocked : 4 K CCTV backhaul & 
edge AI, AR maintenance, broadband 
passenger Wi-Fi without a second network



Interoperability Initiatives

• IEEE P1474.5 ‘Open CBTC Messages’ draft 
enables vendor-agnostic zone-to-train 
telegrams

• UITP / ITxPT “Open CBTC Forum” targets 
multi-vendor fleets before 2030 (first 
reference pilots in Copenhagen & Singapore)

• EU-Shift2Rail X2Rail-1 / EULYNX exports ETCS-
style subsystem interfaces to metro CBTC to 
ease brownfield upgrades



Wrap-Up 

Part 1 -Intro and proposal: 
Fixed block singaling 

limitations and CBTC = 
moving-block radio control; 

frees capacity & enables GoA.

Part 2 – Fundamentals and 
History of CBTC and  by 
SELTRAC ’80s → Paris 14 
(1998) → NYC L (2009)

Part 3 – Architecture and 
Operation: Various pillars: 

VOBC, ZC, ATS, Data Comm, 
ETC.

Part 4-Development and 
integration: Ex: Greenfield 
(built new) vs Brownfield 

(retrofit under traffic)

Part 5 – Design Considerations 
and Integration: Safety + 

Cyber + Redundancy; 5G next 
wave of CBTC.



Thank You.

- Alexander Impastato

- Electrical and Computer 
Engineering M.S

- New York Institute of 
Technology

- L.K Comstock Railworks

- 1-516-404-8830

- aimpastato888@gmail.com

- aimpasta@nyit.edu

mailto:aimpastato888@gmail.com
mailto:aimpastato888@gmail.com


Track Circuit vs CBTC Diagram

• Visual: Schematic comparing track circuit block detection

• CBTC beacon + radio for continuous detection

• Highlights legacy vs modern hardware footprint



Beacon & Odometry Example

• Visual: Train passes beacon every 300 m

• Odometry measures intermediate distance

• Error reset at each beacon read



Network Topology Example

• Visual: Dual ring fiber with access switches

• Redundant radio APs every 250 m

• Core routers at OCC



Case Study – London Underground

• Jubilee Line upgrade to CBTC (2011)

• Headway improved from 24 to 30 tph

• Project lessons: staff training & staged testing



Capacity Math Worked Example

• Given v=60 km/h, a=1 m/s², EB dist = 50 m

• Add 5 m error, 10 m overlap → 65 m gap

• Compare with 300 m fixed block gap



System Availability Metrics

• Target: >99.99% service uptime

• MTBF & MTTR for critical components

• Redundancy strategy meets KPI



Safety Integrity Level (SIL) Table

• SIL 1–4 probabilities of dangerous failure/hr

• CBTC vital functions => SIL 4

• Design & test rigor grows with SIL
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