Digital Design with FPGAs

A TECHNICAL TALK FOR THE IEEE CONSULTANTS NETWORK OF LONG ISLAND
(LICN)




Presenter and Affiliation

Presented by: Smitha Kaje

Embedded Systems Engineer

Affiliation: Spellman High Voltage Electronics Corporation, NY




What we’ll Cover Today

Part I: Introduction and History Part Il: The Internal Architecture
What are FPGAs? Early Digital Design
A Brief History Inside a Modern FPGA
Major Vendors Core Components
Types of FPGAs High-Speed Transceivers
FPGA versus ASIC FPGA DSP
FPGA Boards Clock in FPGA
FPGA Timing



What we’ll Cover Today

Part lll: The Design Methodology Part IV: Applications
The FPGA Design Flow Al/Machine Learning
Hardware Description Languages (HDLs) Medical Imaging

FPGA Verification & Simulation

Part V:
Behavioral Simulation

Tools and Courses

Q&A

Synthesis
Functional Simulation

Timing Simulation



Part |
INTRODUCTION AND HISTORY

R




What are FPGAS? Field Programmable Gate Arrays

An Integrated Circuit (IC), or "chip," is a

miniature electronic circuit on a single piece

of semiconductor material

FPGAs are reconfigurable integrated circuits that act
as blank digital logic chips, allowing users to define
and implement custom digital circuits by programming
the logic blocks and their interconnections

A Stratix IV FPGA from Altera

CREDIT TO ORIGINAL SOURCE 6

WIKIPEDIA




The History of the FPGAs:

Pre-FPGA programmable logic (1950s — 1970s)

1957: Programmable Read-Only Memory (PROM)
Wen Tsing Chow invented PROM for the Atlas E/F airborne digital computer, patenting the
"storage matrix" technology

1970: Erasable Programmable Read-Only Memory (EPROM)
Dov Frohman of Intel filed a patent for EPROM, which could be erased with ultraviolet light

1977: Programmable Array Logic (PAL)
John Birkner and Hua-Thye Chua filed a patent for PAL, featuring a programmable AND plane and
a fixed OR plane.

CREDIT TO ORIGINAL SOURCE 7



The History of the FPGA:

The Age of Invention (1984 — 1991)

* 1983 — 1984: The first reprogrammable logic device Altera
Founded in 1983, delivered the first reprogrammable logic device in 1984, the EP300
It was based on EPROM technology, requiring a UV lamp for erasure

e 1984 - 1985: The first commercial FPGA
Former Zilog engineers Ross Freeman, Bernard Vonderschmitt, and James V. Barnett |l founded Xilinx in 1984
In 1985, they released the XC2064, the first commercially viable field-programmable gate array.
The term "FPGA" was later popularized by competitor Actel in the late 1980s

* 1987:
US Naval Surface Warfare Center project Steve Casselman secured funding for a reconfigurable computer with
600,000 gates
The project was successful, and a patent was issued in 1992

CREDIT TO ORIGINAL SOURCE 8



The History of the FPGA:

The Age of Expansion (1992 — 1999)

* Increased competition and market share growth:
Competitors like Actel (later Microsemi, then Microchip) entered the market.
By 1993, the FPGA market had grown significantly, with Actel holding 18% market share

e Market diversification:
By the late 1990s, FPGAs had expanded into consumer, automotive, and industrial electronics

* Enhanced architecture:
The introduction of dedicated multipliers into FPGA architectures in the late 1990s enabled FPGAs to compete with
digital signal processors (DSPs) in many applications.

CREDIT TO ORIGINAL SOURCE 9



The History of the FPGA:

The Age of Accumulation (2000 — 2007)

e System-on-a-Chip (SoC) integration:
Xilinx introduced its first SoC in 2012, which combined a processor system with programmable logic

* Early data center usage:
Companies began to explore using FPGAs for hardware acceleration in data centers

CREDIT TO ORIGINAL SOURCE 10




The History of the FPGA:

Recent modern applications

* 2014: Microsoft's Project Catapult
Microsoft began deploying FPGAs in its data centers to accelerate the Bing search engine, demonstrating the
technology's performance-per-watt benefits for computationally intensive tasks

* 2015: Acquisition of Altera bY Intel
Intel acquired Altera for $16.7 billion, a major move by a CPU giant to acquire FPGA technology

* 2019: Al engine integration
FPGAs evolved to incorporate specialized hardware for artificial intelligence (Al) and machine learning workloads

* 2022: Acquisition of Xilinx by AMD
AMD completed a $50 billion acquisition of Xilinx, signaling the growing strategic importance of FPGAs in the
semiconductor industry

e Continued hardware acceleration across various fields

CREDIT TO ORIGINAL SOURCE 11




Major Vendors & Manufacturers of FPGAs SeARTAN

UltraScale+

AMD (Advanced Micro Devices)

o Acquired: Xilinx (the pioneer of the FPGA) in 2022

o Focus: High-performance FPGAs, Adaptive SoCs (Versal ACAP), and System-on-Chip (SoC) FPGAs for Data Center,
Al/ML, 5G, and Aerospace/Defense

o Key Products: Virtex, Kintex, Artix, Spartan, and Zyng/Versal ACAP families _ H '

|ntel

° Intel Corporation | STRATIX"
> Acquired: Altera in 2015 | inside

> Focus: H(ljgh-performance, high-density FPGAs, primarily targeting Data Center, Networking, and
embedded applications

o Key Products: Agilex, Stratix, Arria, Cyclone, and MAX families

Prices range from $10 (Lattice iCE40) to several thousand dollars (Stratix 10 TX FPGA Device - $55K)

CREDIT TO ORIGINAL SOURCE 12



FPGA versus ASIC

Programmable ICs: Fixed-Function ICs:
FPGAs ASICs (Application-Specific Integrated
Circuits )

Flexible, reconfigurable internal structure
Internal wiring is permanent and cannot be

Functionality is not set until after manufacturing, altered

when the user "programs" them
Examples:

FPGA vs. ASIC A CPU, a simple logic gate chip

tel

CREDIT TO ORIGINAL SOURCE

HTTPS://WWW.UTMEL.COM/BLOG/CATEGORIES/INTEGRATED%20CIRCUIT/FPGA-VS-ASIC-COMPREHENSIVE-COMPARISON-GUIDE



Comparison between FPGA and ASIC

Feature

Flexibility

Performance

Power Consumption

Development Cost

Production Cost per Unit

Time to Market

Reprogrammability

Suitable Production Cycle

Design Cycle

Examples

FPGA

High (reprogrammable)

Lower than ASIC

Higher compared to ASIC

Low (no NRE cost)
Higher compared to ASIC

Shorter (reprogrammable, adaptable)

Yes (can change algorithms
post-production)

Small to medium scale

Shorter

Custom chips in smartphones, game
consoles, smart TVs

CREDIT TO ORIGINAL SOURCE

ASIC

Low (not reprogrammable)

Higher Performance for specific tasks

Lower (optimized for efficiency)

High (high NRE cost)
Lower (optimized for volume)

Longer (due to design and
fabrication)

No (fixed design)

High volume (to offset NRE costs)

Longer

Flexible Control Systems, Data
Center Acceleration

HTTPS://WWW.CANDTSOLUTION.COM/NEWS_EVENTS-DETAIL/WHAT-IS-FPGA-FIELD-PROGRAMMABLE-GATE-ARRAY-AND-HOW-DOES-IT-WORK/



1.

Types of FPGAs

SRAM-based FPGAs

o Configuration: Stores its configuration in volatile Static Random-Access Memory (SRAM)

o Programming: Highly reprogrammable

o Operation: Requires an external, non-volatile memory (like flash) to load the bitstream when the device powers on
o Characteristics: Offers a high degree of flexibility for frequent updates or dynamic configurations

o Example Vendors: Lattice Semiconductor

Antifuse-based FPGAs

o Configuration: Uses antifuses, which are one-time programmable elements

° Programming: Once programmed, the antifuses create a permanent connection that cannot be changed
o Characteristics: Non-volatile, small routing delays, and good for security as they are difficult to read

o Example Vendors: Microchip

Flash-based FPGAs
Configuration: Stores its configuration in non-volatile flash memory

Programming: Reprogrammable and non-volatile, combining the benefits of both SRAM and antifuse FPGAs
Characteristics: Offers a balance of non-volatility for faster boot times and the ability to be reprogrammed
Example Vendors: Microchip, Lattice

CREDIT TO ORIGINAL SOURCE: GOOGLE



Types of FPGAs

1. EEPROM-based FPGAs
o Configuration: Uses Electrically Erasable Programmable Read-Only Memory (EEPROM) to store its configuration

> Programming: Highly reprogrammable
o Characteristics: Non-volatile and reprogrammable, similar to flash-based FPGAs
o Example Vendors: AMD, Intel

2. Hybrid FPGAs
o Configuration: Integrates various types of programmable elements (e.g., SRAM and flash logic)

° Programming: Once programmed, the antifuses create a permanent connection that cannot be changed
o Characteristics: Provides a combination of performance, low-power operation, and versatility
o Example Vendors: AMD, Microchip, Intel

3. System-On-Chip (SoC) FPGAs
o Configuration: Integrates traditional FPGA logic with hard processor cores (like CPUs and GPUs) on a single chip

° Programming: Reprogrammable and non-volatile, combining the benefits of both SRAM and antifuse FPGAs

o Characteristics: Combines the flexibility of FPGAs with the advanced processing capabilities of a traditional SoC for complex,
heterogeneous workloads

o Example Vendors: AMD, Intel

CREDIT TO ORIGINAL SOURCE: GOOGLE 16




FPGA Boards

FPGA development boards come equipped with essential peripherals such as switches, LEDs,
Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACs)

CREDIT TO ORIGINAL SOURCE 17




Types of FPGA Boards

1. General-purpose development boards

o Best for: Beginners and students learning digital logic design and FPGA programming
o Features: Standar\d peripherals like LEDs, buttons, switches, and basic I/O interfaces

Digilent Basys 3: Has a Xilinx Artix-7 FPGA, with onboard I/0 From Terasic with an Intel Cyclone 10 FPGA, including 7-segment displays

CREDIT TO ORIGINAL SOURCE 18




Types of FPGA Boards

2. System-On-Chip (SoC) FPGA boards

> Has a powerful hard-core processor (like an ARM Cortex-A9) with the FPGA's programmable logic on a single chip

. Programmable Logic IC Development Tools DE10-Nano Dev Kit
Digilent Zybo Z7 Zyng-7000 ARM/FPGA SoC Development Board

CREDIT TO ORIGINAL SOURCE




Types of FPGA Boards

3. High-performance computing (HPC) boards

- These include high-speed transceivers and large-capacity FPGAs.

Agilex™ 7 FPGA F-Series FPGA Development Kit

CREDIT TO ORIGINAL SOURCE

20



Types of FPGA Boards

4. Application-specific boards

- Optimized for a particular purpose or industry and
feature specialized peripherals and configurations

Example: Aerospace, Medical Imaging

AMD Zynq™ UltraScale+™ RFSoC ZCU111

CREDIT TO ORIGINAL SOURCE




Types of FPGA Boards

5. Custom FPGA boards

° For applications with highly specific requirements that cannot be met by off-the-shelf options

CREDIT TO ORIGINAL SOURCE 22




Part ||
THE INTERNAL ARCHITECTURE

R




Early Digital Design

The first programmable chips were PLAs (Programmable Logic Arrays)

Two-level structures of AND and OR gates with user-programmable connections

Generically called Programmable Logic % % % B AxA B B
\.\.Q:\‘j::}x1 'L.L T > x=ase
AVEAVEAVE AW e
’\."\.”\.”\.D*Xz ‘\‘DXZ=A+B
F o N
'\.’\."LX.D*& foxme
Basic OR array
NAND Gate Schematic ~ ) i i
A A B B A A B B
i T "
e D i o e
e e e S s
R hh] )— % ) xee

Basic AND array

CREDIT TO ORIGINAL SOURCE

SLIDESERVE.COM/ODELL/INTRODUCTION-TO-FIELD-PROGRAMMABLE-GATE-ARRAYS



Early Digital Design

Some would design chips on their own using an array of NAND Gates

ground Vecc Ve
Ain B in
1 *ﬂ #EL
m < NAND out
J Ain B in_i
l_l_l‘U
_T_ _t[]_ A in_|
Ve
B in ground
NAND out
NAND Gate Schematic

NAND Gate on the die

CREDIT TO ORIGINAL SOURCE

HTTPS://WWW.RIGHTO.COM/2024/03/IDT-GATE-ARRAY.HTML



Early Digital Design

The e)arliest logic integrated circuits used resistors and transistors internally, so were called RTL (Resistor Transistor
Logic

RTL was replaced by Diode Transistor Logic (DTL) and then by Transistor Transistor Logic (TTL)

IIglngilrgeers used discrete 7400-series transistor-transistor logic (TTL) integrated circuits (ICs) as modular building
ocks

Texas Instruments (TI) first introduced the 7400-series
Inexpensive, fast, and easy to use

Started with simple logic circuits such as four NAND gates on a chip, and
moved into more complex chips such as counters, shift registers, and ALUs

Example: was used in Apple Il

A tiny silicon die in its package
IDT 54FCT139ALB dual 1-of-4 decoder

CREDIT TO ORIGINAL SOURCE 26
HTTPS://WWW.RIGHTO.COM/2024/03/IDT-GATE-ARRAY.HTML




Inside a Modern FPGA

A matrix of reconfigurable logic blocks (CLBs)

Interconnected by a programmable routing fabric

Input/Output Blocks Clocking

Clocking Architecture

High-Speed Transceivers

FPGA DSP

DIA DOA
DIPA DOPA]

mammn a o
/ supEEEEEEEEEEEEE
00000000000 O0O00OD0O0ODDOD

ADDRA

CLKA
C

DIB DOB
DIPB DOPB

ADDRB

CLKB

- 4
https://www.researchgate.net/figure/linx-structure-of-FPGA-123_figl5 257675533

CREDIT TO ORIGINAL SOURCE

HTTPS://HARDWAREBEE.COM/THE-ULTIMATE-GUIDE-TO-FPGA-ARCHITECTURE/




Core Components of an FPGA

* Configurable Logic Blocks (CLB) with programmable logic (LUT) and

few registers - implement logic functions OO0 OO OO0 DD/CI:_%ngfiigurable
7 Block
* Input Output Blocks - make off-chip connections "OB'°°k_>E Olloliollio El
* Programmable interconnects - connect I/0O blocks and CLBs E it g
[ [
Slallollallalls
gorigontal
colraffallaffalle &
Vertical

Routing

channel— 1[0 OO OO OO

CREDIT TO ORIGINAL SOURCE
HTTPS://DIGITALSYSTEMDESIGN.IN/FPGA-BASIC-OVERVIEW/

28




Configurable Logic Blocks (CLBs)

Any logic circuit can be realized in terms of these CLBs

. . . Input A Input B | OutputC
Generally, consists of a LUT, a multiplexer and flip-flops po PO :
0 1 0
1 0 0
e 1 1 1
; CLB \
E B . Lookup table that is implementing
E g ! the function of an AND gate
i LUT M ————»Output |
: C ux )
. D Flip : |
! Flop !
e - i
i clk |
:‘ reset ‘

CREDIT TO ORIGINAL SOURCE
HTTPS://HARDWAREBEE.COM/WHAT-IS-FPGA/

HTTPS://HARDWAREBEE.COM/THE-ULTIMATE-GUIDE-TO-FPGA-ARCHITECTURE/
HTTPS://HARDWAREBEE.COM/OVERVIEW-OF-LOOKUP-TABLES-IN-FPGA-DESIGN/



Input/Output Blocks

The interface between an FPGA and other external devices is enabled by input/output (I/0) blocks

All signals entering or leaving the FPGA do so through device pins and associated IOBs

3-State

—

FPGA
Pin

FPGA 10 Block

CREDIT TO ORIGINAL SOURCE

HTTPS://HARDWAREBEE.COM/WHAT-IS-FPGA/ 30




Programmable Interconnects

The various logic blocks are connected with the help of this internal routing

B
- Bg -
B

CREDIT TO ORIGINAL SOURCE
HTTPS://HARDWAREBEE.COM/WHAT-IS-FPGA/

non
oo

31




High-Speed Transceivers

To establish communication between the FPGA device and the external interfaces or devices
Many standard protocols that can be used for this purpose: Ethernet, PCI, HDMI

Ethernet: Intel's Agilex series

Intel Agilex FPGAs support up to PCle 4.0 x8, while AMD Versal and older 7 Series FPGAs offer up
to PCle 3.0

CREDIT TO ORIGINAL SOURCE

HTTPS://HARDWAREBEE.COM/THE-ULTIMATE-GUIDE-TO-FPGA-ARCHITECTURE/



FPGA DSP

The DSP48E2 was first introduced in Virtex—5 FPGA to make the multiplication and accumulation
operations fast

DSP48E2 Slice

Courtesy: Xilinx

CREDIT TO ORIGINAL SOURCE

HTTPS://HARDWAREBEE.COM/THE-ULTIMATE-GUIDE-TO-FPGA-ARCHITECTURE/




Clock in FPGA

A clock is a signal inside any digital circuit that determines how fast a flip-flop

runs FPGA
The faster the clock, the faster the design will run

Responsible for driving the FPGA design and determines how fast it can run an
process data (maximum of upwards of 1GHz)

The clock signal is connected to all flip-flops and RAM blocks and activates ther
according to the clock frequency

A typical FPGA consists of several clock signals and thus allows different areas
across the FPGA to operate in various speeds

FPGA systems contain internal phase-locked loops (PLLs) that help generate
various frequencies of signal waves

CREDIT TO ORIGINAL SOURCE

HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-CLOCK



Clock in FPGA

FPGA

A single FPGA system will employ the use of at least one clock that will
generate a wave at a certain frequency, which will then be distributed across
the FPGA to produce a synchronized response from all the flip-flops involved

in the design A

Osc past SETH

An external oscillator placed on the circuit board is what generates the
square wave or clock signal with a certain frequency and enters the FPGA
system through a single physical connecting pin v

The clock signals are distributed along interconnected wires (called global
routing) so that the signal is distributed and received at the same time by
each flip-flop

FPGA with 2 clock domains
running 2 separate clock speeds

CREDIT TO ORIGINAL SOURCE

HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-CLOCK



FPGA Timing

Timing refers to when it takes a signal to propagate from one flip-flop, through some
combinational logic, to the next flip-flop

It takes some time for the signal to propagate to the output

The more transistors we need to turn-on and turn-off, the longer it takes

CREDIT TO ORIGINAL SOURCE 36



Part |11
THE DESIGN METHODOLOGY

R




FPGA Design Flow

Design Entry Synthesis Implementation Program FPGA

CREDIT TO ORIGINAL SOURCE
HTTPS://WWW.LOGIC-FRUIT.COM/BLOG/FPGA/FPGA-DESIGN-AN-ULTIMATE-GUIDE-FOR-FPGA-ENTHUSIASTS




FPGA Design Flow

Design entry

(Schematics or HDL) [[ e o
module or_gate_2_input (
input A,
input B,
HDL: Hardware Description Language output Q
);

// Output Q is TRUE if A OR B is TRUE.
assign Q=A | B;

endmodule

CREDIT TO ORIGINAL SOURCE
HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-DESIGN-FLOW/ 39




FPGA Design Flow

Synthesis A
B

Steps:
* Parsing: Syntax check on the HDL-based design Synthesized OR Gate
* Optimize: By reducing logic, eliminating redundant logic, and reducing the size of the design

* Generate a techno-independent output: The output of synthesis is a generic netlist (not yet specific to any particular FPGA family or
device)

* Performed by dedicated synthesis tools

* Cadence, Synopsys and Mentor Graphics are EDA companies that develop, sell, and market FPGA synthesis tools.

CREDIT TO ORIGINAL SOURCE

HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-DESIGN-FLOW/




FPGA Design Flow

* The layout of our design will be determined

Implementation

(Place and Route) * Three steps: translate, map, and place & route

* Placement: The first step for the tools is to gather all the constraints that are set by the user, together with the netlist files

* The logic elements (like the logic gates for the OR function) are assigned to specific physical locations (logic cells) within the
FPGA's grid.

* Routing: Electrical connections (wires) are programmed to connect the placed logic cells, creating the actual circuit paths within
the FPGA.

CREDIT TO ORIGINAL SOURCE

HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-DESIGN-FLOW/
HTTPS://WWW.TENCENTCLOUD.COM/TECHPEDIA/101380




FPGA Design Flow

Program FPGA

* The last step in the process is to finally load the mapped-out and completely . ,
o Xilinx ASCII Bitstream Created by
routed design into the FPGA

Bitstream 2018.3 SW Build 2405991 on Thu
Dec 6 23:36:41 MST 2018 Design name:
base_mb_wrapper;UserID=0XFFFFFFFF;Version
=2018.3 Architecture: virtexuplus Part:
* Example: a .bit or .rpt file generated by vendor tools like Intel Quartus xcvudp-£flga2104-2L-e Date: Wed Nov 20
Prime or Xilinx Vivado 04:13:05 2019 Bits: 641272864
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111

e For this, we will need to generate a BitSteam file

* Bitstreams can either full or partial

(entire or partial configuration memory of a given device)

CREDIT TO ORIGINAL SOURCE
HTTP://LASTWEEK.IO/FPGA/BITSTREAM/ 42




Hardware Description Languages (HDLs)

A specialized language used to design and describe the behavior and structure of digital circuits

Not a Traditional Programming Language:
Unlike Python or C++, HDLs DO NOT execute sequential instructions.
Instead, they act as a blueprint for digital logic

Synthesizable Code:
Key characteristic - The HDL code must be synthesizable to be translated into actual hardware components
(registers, gates) that the FPGA can implement.

VHDL: Developed by the United States Department of Defense in the 1980s
VHDL stands for VHSIC Hardware Description Language. "VHSIC" is an acronym for Very High-Speed Integrated Circuit

Verilog: Created by Gateway Design Automation (Prabhu Goel, Phil Moorby, and Chi-Lai Huang) in the mid-1980s

SystemVerilog: An extension of Verilog that adds features for writing sophisticated test benches
Developed by the Co-Design Automation startup.

CREDIT TO ORIGINAL SOURCE: GOOGLE 43



FPGA Verification & Simulation

We have the opportunity to simulate and test the design:

. FPGA Design Flow FPGA Simulation Flow
* At design entry

Simulation

Design Entry

* At post synthesis

Synthesis Simulation

* At post implementation

Implementation Simulation

Program FPGA

CREDIT TO ORIGINAL SOURCE
HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-DESIGN-FLOW/




Behavioral Simulation (At Design Entry)

Called RTL Simulation

g Caltera\13.T\mux\mux2to1.v - Notepad++
File Edit Search View Encoding Language Settings Tools M

cHHGS LS 4 Hbh el @ %@

To test the code and find the logic errors Bmozoty # B
at // mux2tol.v
2 module mux2tol (
3 input a,
4 input b,
5 input sel,
. 6 output reg out
Design Under Test (DUT): 7 ) ;
8

2-to-1 Multiplexer

9 always @(*) begin
10 if (sel == 1'b0) begin
apiif out = ajy
12 end else begin
13 out = b;
14 end
15 end
16
a2 endmodulq

CREDIT TO ORIGINAL SOURCE
HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-DESIGN-FLOW/

45




Behavioral Simulation

[ testbench_mux2to1.v # E3 |

1 // testbench mux2tol.v
2 module testbench mux2tol;
3
4 // Declare signals for connecting to the DUT
5 reg tb_a;
(3 reg tb_b;
7 reg tb_sel;
8 wire tb_out;
S
10 // Instantiate the DUT
11 = mux2tol uut (
. 12 .a(tb_a),
Behavioral :
14 .sel(tb_sel),
15 .out (tb_out)
Testbench .
esibenc 17
18 // Initial block for generating stimulus
19 = initial begin
20 // Initialize inputs|
21 tb.a = 0;
22 tb b =
23 tb_sel 0;
24
25; // Display initial state
26 $display("Time = %0t, a = %b, b = %b, sel = %b, out = %b", S$time, tb_a, tb_b, tb_sel, tb_out):
2
28 [/ Test case 1:
29 #10 tb a = 1;
30 Sdisplay("Time = %b, out = %b", S$time, tb_a, tb_b, tb_sel, tb_out):;
31
32 // Test case 2: sel =1, a =0, b =1
33 #10 tb a = 0; tb b = 1; tb_sel = 1;
34 $display("Time = %0t, a = %b, b = %b, sel = b, out = 3b", S$time, tb_a, tb b, tb_sel, tb_out);
35
36 L/ Test case 3=
37 #10 tb_a =
38 Sdisplay("Time = % = %b, out = %b", Stime, tb a, tb b, tb sel, tb out);
39
40 // End simulation
41 #10 sfinish;
42 - end
43
44 // Monitor changes (optional, for detailed logging)
45 initial begin
46 [E $monitor ("MONITOR: Time = %0t, a = %b, b = %b, sel = %b, out = %b", Stime, tb_a, tb_b, tb_sel, tb out):;
47 end
48

49 endmodule




Behavioral Simulation

Verilog simulator: ModelSim

ﬁ ModelSim ALTERA STARTER EDITION 10.1d - a X
File Edit View Compile Simulate Add Project Tools Layout Bookmarks Window Help
oo £ | Comple... O AT M| %X |l & B & . I A 3 A e
swud o= |oAER] 0 x| suan] [¥at e s ] w7
ComnLayout o) GRS AT w[|N a4 B K4A8R| |Htew F welURREe | 0 He |
" = | Compie Order

Hd1 x| |8 Processes (Active)

“[stoufType [ordelodted
' Veriog 1 10/06/2501:06:21PM

Verlog 0  10/06/25 01:05:51 PM

[&f testbench_mux2to1.v
i mux2tol




Behavioral Simulation
ModelSim: Output Signals

18| Wave - o X
File Edit View Add Format Tools Bookmarks Window Help
-Wm-Defnlt 2 e %]
ERLECIEL L TR ~ug\[@m?;Hgﬂm;,-;5|—mmi;uzzzuaz; f;;zfgge'@Htﬁ??.:ﬁ.m“%vi‘&v%?a.“w%IIT[q.Jgoj;g B |

&L e %

|

e B | | |

[Qeeaa|[Tym Wl (]
. Msgs

- | [«

|
|
,,,,, ”.....llllllllllllh
4




Synthesis: Using Quartus

9 Quartus Il 64-Bit - C:/L je/Doct 2to1 - mux2to1 = a X
File Edit View Project Assignments Processing Tools Window Help Search altera.com ®
muxztol - SOPQ O re B0 B2 QP A0
|Project Navigator 8% @ Compilation Report - mux2tol (x]
Flow Summa
Ay cyclone m: AUTO Flow Status Successful - Mon Oct 06 14:29:31 2025
4 mutol L Quartus II 64-Bit Version 13.1.0 Build 162 10/23/2013 SJ Web Edition
Revision Name muwtol
Top-level Entity Name mux2tol
Family Cyclone I
Total logic elements 1
Total combinational functions 1
Dedicated logic registers 0
Total registers 0
Total pins 4
Total virtual pins 0
Total memory bits 0
Embedded Multiplier 9-bit elements 0
Total PLLs 0
— —
4> vierarchy ~ [El Files o DesignUnits  *% IP Components i Revi 4| )
[Tasks 28 x|
Flow: Compilation v Customize...
Task ® Time
v » Compile Design |
< v P Analysis & Synthesis 00:00:02
(] Edit Settings
9 View Report
v P Analysis & Elaboration
> » Partition Merge
Xllan] (@ (Al (4] 6] P <<searcn>> v
2 Cype ID Messadge
@ KRR KKK EAEAEAAEEAEAEAEAEAEAEKEE KR KA EEEEEEE KRR KRR Rk Kk
> ® Running Quartus II 64-Bit Analysis & Synthesis
@ Command: quartus_map --read_settings_files=on --write_settings_files=off mux2tol -c mux2tol
@ 20030 Parallel compilation is enabled and will use 16 of the 16 processors detected
> @ 12021 Found 1 design units, including 1 entities, in source file testbench mux2tol.v
> @ 12021 Found 1 design units, including 1 entities, in source file mux2tol.v
@ 12127 Elaborating entity "mux2tol" for the top level hierarchy
@ 286030 Timing-Driven Synthesis is running
> @ 16010 Generating hard block partition "hard block:auto_generated inst"
> @ 21057 Implemented 5 device resources after synthesis - the final resource count might be different
> @ Quartus II 64-Bit Analysis & Synthesis was successful. 0 errors, 0 warnings
8
§ < >
i)
| =\_System /\ Processing (11

100% 00:00:02




Synthesis Results: RTL Viewer

d RTL Viewer - C:/Users/skaje/Documents/mux/mux2to1 - mux2to1
File Edit View Tools Window Help &

8 x
Search altera.com __ @
ar @aikax=e Page: 1of1 -
X > Bz mux2tol
® s
H
-
L
g
|
3
mutot:1 ||
a
4

10nos  annnend




Synthesis Results: Technology Map Viewer

X

a Technology Map Viewer - Post-Mapping - C:/U /skaje/Doci X/ 2to1 - mux2to1 - (u]
File Edit View Tools Window Help & Search altera.com ®

@ E®ALAAN =9 NE
T

b~input

b -
10 IBUF out~0
a~input DAT/

out~output
| OfF—_ > out

I0_IBUF I0_OBUF

sel~input LOGIC_CELL_COMB (AACC)

I0_IBUF

CREDIT TO ORIGINAL SOURCE




Functional Simulation (Post Synthesis)

To verify the design functionality after the synthesis process has been completed

lgnores timing-related issues

CREDIT TO ORIGINAL SOURCE
HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-DESIGN-FLOW/

52




& Quartus Il 64-Bit - C:/Users/skaje/Documents/mux/mux2to - mux2to1

Fle Edit View Proje S ents Processing Tools Window Help &
moctot LR A TR AT I X
° ° e Project Navigator 28 x| L") Compilation Report - mux2tol a
Ay Cyclone III: AUTO Flow Status Successful - Mon Oct 06 15:09:25 2025
4 muxtol L) Quartus II 64-Bit Version 13.1.0 Build 162 10/23/2013 S] Web Edition
Revision Name mux2tol
Top-level Entity Name mux2tol
Family Cyclone I
Total logic elements 1/5136(<1%)
Total combinational functions 1/5136(<1%)
Dedicated logic registers 0/51~ ==
. Total registers 0 & New X
« Create Vector Waveform Fil f):
reate vector vvaverorm rilie (.vWr): Toal e s 0 Qays System Fie
Total memory bits 0/42 State Machine File

SystemVerilog HDL File

In Quartus, create a new Vector Waveform File (File b il | —

G P Verilog HDL File
S VHDL File

> New > Verification/Programming Files > Vector = e e T s

Memory Initialization File

v Verification/Debugging Files

WaVEfO r m F i I e ) = taxl In-System Sources and Probes File

Flow: Compilation v Customize... Logic Analyzer Interface File

SignalTap II Logic Analyzer File

e Use the Node Finder to add our mux2tol's input and 8 e W —

« v P Compile Design 00:00:13 4
. < > P Analysis & Synthesis 00:00:02 ::"ztg;‘::‘”:; E::z
4 > W Fitter (Place & Route) 00:00:04 i
O u t p Ut p I n S v > » Alssee:nblzficen:r:ti programming files) 00:00:02 g::;r;:;s;::;ngl:waints File
. . v > P TimeQuest Timing Analysis 00:00:03 Text File
° D f t t t ( f ) f t v > B EDA Netlist Writ 00:00:02
efine test vectors (waveforms) for our inputs L

N ———

& Simulation Waveform Editor - C:/Users/skaje/Documents/mux/mux2to1 - mux2to1 - [Waveform2.vwf]
File Edit View Simulation Help

b SR g A & DT E R CEZIE e A a8

Master Time Bar: 0 ps Al »  Pointer: 3.14 ns Interval: 3.14
N Valueat ||0PS
0ps 0 ps
b a BO | |
B b B1 [ J
s El BO |
= out BX 9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.0.9,




Functional Simulation

@ Simulation Waveform Editor - C:/Users/skaje/Documents/mux/mux2to1 - mux2to1 - [simulation/qsim/mux2to1.sim.vwf (Read-Only)]

= (u] X
File Edit View Simulation Help & Search altera.com O
B@ K & A & HE R NIE R R R A B

Master Time Bar: 0 ps 4 »  Pointer: 940 ps Interval: 940 ps Start End:

Value at 0 ps 1.0ns 2.0ns 3.0ns 4.0 ns 5.0 ns 6.0 ns 7.0ns 8.0 ns =

Name 0
0ps ps

L a BO | I | I | I |
B b B1 I I I I I | I
o osel BO | | | .
ot out BO | |




Timing or Gate-level Simulation (At Implementation)

Verifies that a design still works correctly after it has been placed and routed onto the target FPGA,
factoring in real-world delays from the logic elements and physical wiring

Verifies the design functionality after the synthesis process has been completed

Gives the most accurate picture of our design behavior

Takes into account the target FPGA chip and all the logic blocks functionality, wiring, and delays

CREDIT TO ORIGINAL SOURCE
HTTPS://HARDWAREBEE.COM/ULTIMATE-GUIDE-FPGA-DESIGN-FLOW/

55




Timing Simulation

1. Full Compilation and Netlist Generation:

Run a Full Compilation in Quartus

[=] mux2to1_6_1200mv_85¢_slowvo £ E3

Configure Assignments > Settings > EDA Tool Settings > Simulation

Quartus will generate a post-fit netlist (e.g., .vo or .vho) and an SDF
(Standard Delay Format, .sdo) file in the simulation/modelsim directory.
The SDF file contains the precise timing delays

[=] mux2to1_6_1200mv_85c_v_slow.sdo % Bl

19

20 //

21 // This file contains Slow Corner delays for the design using part EP3C5F256C6,
22 // with speed grade 6, core voltage 1.2V, and temperature 85 Celsius
23 //

24

25 //

26 // This SDF file should be used for ModelSim-Altera (Verilog) only
27 Vi

28

29 (DELAYFILE

30 (SDEVERSION "2.1")

31 (DESIGN "mux2tol")

32 (DATE "10/06/2025 14:59:04")

33 (VENDOR "Altera")

34 (PROGRAM "Quartus II 64-Bit")

35 (VERSION "Version 13.1.0 Build 162 10/23/2013 SJ Web Edition")
36 (DIVIDER .)

37 (TIMESCALE 1 ps)

38

39 (CELL

40 (CELLTYPE "cycloneiii io_obuf")

41 (INSTANCE out\~output)

42 (DELAY

43 (ABSOLUTE

44 (PORT i (1379:1379:1379) (1436:1436:1436))

45 (IOPATH i o (1969:1969:1969) (1953:1953:1953))

AR A

// Device: Altera EP3CS5F256C6 Package FBGA256
/7

//
// This Verilog file should be used for ModelSim-Altera (Verilog) only
/!

“timescale 1 ps/ 1 ps

module mux2tol (
a,

b,

sel,

out) ;
input a;
input b;
input sel;

output out;

// Design Ports Information

// out => Location: PIN_D3, I/0 Standard: 2.5 V, Current Strength: Default
// b => Location: PIN RI1, I/0 Standard: 2.5 V, Current Strength: Default
// a => Location: PIN_L8, I/0 Standard: 2.5 V, Current Strength: Default
// sel => Location: PIN_P2, I/0 Standard: 2.5 V, Current Strength: Default

wire gnd;
wire vecc;
wire unknown;

assign gnd = 1'b0;
assign vec = 1'bl;
assign unknown = 1'bx;

tril devclrn;

tril devpor;

tril devoe;

// synopsys translate off

initial $sdf_annotate ("mux2tol_6_1200mv_85c_v_slow.sdo");
// synopsys translate_on

wire \out~output o ;
wire \sel~input o ;
wire \b~input_o ;
wire \a~input_o ;
wire \out~0_combout ;

// Location: IOOBUF_X1_Y¥24 N9
cycloneiii_io_obuf \out~output (
-i(\out~0_combout ),
.oe(vecec),
.seriesterminationcontrol (16'b0000000000000000),
.devoe (devoe) ,
.o(\out~output_o ),




Timing Simulation

2. Create Vector Waveform File (.vwf)

3. Run Timing Simulation

4. In the resulting waveform, will see a measurable time delay between the input changes and the
corresponding output change, which represents the propagation delay of the implemented mux

@3 Simulation Waveform Editor - C:/Users/skaje/Documents/mux/mux2to1 - mux2to1 - [simulation/gsim/mux2to1.sim.vwf (Read-Only)]
File Edit View Simulation Help

BI& |5 & 4 2 )@ E B B B 6|2 w2 2 (=8

1

0.

-

Master Time Bar: 0 ps < »  Pointer: 2.48 ns Interval: 2.48 ns Start:
— Valueat | |0 PS
0 ps 0 ps
B a BO | I | I | I
| b B1 I | I | I |
. sel BO | I |
ot out BO | | |




Part |11
APPLICATIONS AND FUTURE

R




FPGAs Applications

Video &
Image

Medical & Telcom &
Scientific Datacom
FPGA

Applications

Server & Aerospace
Cloud & Defence

CREDIT TO ORIGINAL SOURCE
HTTPS://HARDWAREBEE.COM/FPGA-COMMON-APPLICATIONS/




FPGAs Applications

Aerospace & Defense: Used for radar, communication systems, and flight control in UAVs due to their high-speed signal processing.

Medical Devices: Integrated into patient monitoring systems, imaging equipment (MRI, CT), and therapy delivery devices for their
low-power, high-precision control and data processing capabilities.

Auton&otivelz Found in embedded systems for motor control, sensor management, and flexible connectivity solutions as cars become
more digital.

Consumer Electronics: Accelerate image and video processing in cameras and projectors, enabling features like HDR and 4K/8K video.

Data Centers: Used in servers and networking infrastructure to provide low-latency, high-bandwidth performance for cloud services and
storage.

Al and Machine Learning: FPGAs can be customized to accelerate Al tasks and machine learning inference, providing a flexible and
efficient solution for edge Al and data centers.

Robotics: Incorporate technologies for multi-axis motor control, machine learning, and functional safety, essential for modern smart
robotics.

Telecommunications: Implement high-speed network interfaces and digital signal processing for network infrastructure and satellite
communications.

Pk:ototyping: FPGAs serve as valuable platforms for developing and prototyping custom integrated circuits (ASICs) before manufacturing
them.

CREDIT TO ORIGINAL SOURCE: GOOGLE 60




Al/Machine Learning

Artificial
Intelligence

An algorithmic model
granting programs the
ability to learn and reason
like humans.

e B &
© @g
7
Machine
Learning

Algorithms that can learn
and perform specific tasks
without being explicitly
programmed beforehand.

CREDIT TO ORIGINAL SOURCE

Deep
Learning

A subset of Al and machine
learning algorithms that
can adapt and learn from
processing vast amounts
of data thanks to the use
of artificial neural networks.

HTTPS://WWW.APRIORIT.COM/DEV-BLOG/586-FPGAS-FOR-AI




Neural Networks

The inspiration for neural networks comes from the biological neurons in the human brain,
which communicate through electrical signals

Convolutional Neural Networks (CNNs) in Al are for image processing tasks
They use convolution layers to detect patterns in images

Recurrent Neural Networks (RNNs) are designed to handle sequential data
Example usages: Speech recognition, Automated text generation

Transformers and autoencoders for transforming and reconstructing data
Example usage: NLP (Natural Language Processing) — used in translation tools, chatbots

CREDIT TO ORIGINAL SOURCE
HTTPS://WWW.IBM.COM/THINK/TOPICS/NEURAL-NETWORKS

HTTPS://HARDWAREBEE.COM/FPGA-FOR-AI-ARTIFICIAL-INTELLIGENCE-ULTIMATE-GUIDE/



Al/Machine Learning acceleration

Deep neural network
Convolutional Neural Networks (CNN)

Input layer Multiple hidden layer Output layer

Input Layer: holds the raw features (X1, X2, X3...)

Hidden layers: consist of artificial neurons (or nodes) that transform inputs
into new representations

Input features, multiplied by their associated weights and added bias to
pass from one layer to the next layer, eventually arriving at the final output
layer. Called “Linear Transformation”

Output layer: Further, a nonlinear activation function (tanh, sigmoid, ReLU )
is added to produce the final prediction

CREDIT TO ORIGINAL SOURCE
HTTPS://WWW.IBM.COM/THINK/TOPICS/NEURAL-NETWORKS

HTTPS://HARDWAREBEE.COM/FPGA-FOR-AI-ARTIFICIAL-INTELLIGENCE-ULTIMATE-GUIDE/



Al/Machine Learning acceleration

A simple Example: Spam Detection

- i Deep neural network
An email is fed into the network, and features such as words or phrases

||ke "prize," nmoneyn are Used as inputs Input layer Multiple hidden layer Output layer

The early neurons process the importance of each signal, while later layers
combine this information into higher-level cues that capture context and
tone

Weights act like dials that control how strongly each input feature
influences the decision, ex: “prize” has more weight than “hello”

The final layer computes a probability of whether the email is spam, and
if that probability is high enough, the email is flagged

CREDIT TO ORIGINAL SOURCE

HTTPS://WWW.IBM.COM/THINK/TOPICS/NEURAL-NETWORKS
HTTPS://HARDWAREBEE.COM/FPGA-FOR-AI-ARTIFICIAL-INTELLIGENCE-ULTIMATE-GUIDE/




FPGAs in Al/Machine Learning

Flexibility and Reconfigurability: Tailored configurations that meet the specific demands of Al
workloads

Parallel Processing Capabilities: Handling multiple operations simultaneously, essential for the
matrix and vector computations fundamental to machine learning and neural networks

Real-Time Processing

Energy Efficiency: The CLBs of an FPGA can be optimized for convolution operations, improving
computational power while maintaining power efficiency

CREDIT TO ORIGINAL SOURCE

HTTPS://FIDUS.COM/BLOG/THE-ROLE-OF-FPGAS-IN-AI-ACCELERATION/



FPGAs in Al/Machine Learning

Enhanced Security and Data Privacy: FPGAs provide data security by enabling local, on-device
processing that minimizes data transmission to external servers or the cloud, and can incorporate

encryption

Scalability Across Al Applications : From low-power loT deployments to high-performance data
center systems

Long-Term Cost Efficiency

CREDIT TO ORIGINAL SOURCE

HTTPS://FIDUS.COM/BLOG/THE-ROLE-OF-FPGAS-IN-AI-ACCELERATION/



Medical Imaging Device (CT/IGT)

Main components

e Operating Console
e X-ray tube

* High voltage Generator

* Produces a controlled electron flow to generate an X-ray beam
* Operates at high voltages between 50 to 150 kV

* Tube currents range from 10 to 1200 mA

CREDIT TO ORIGINAL SOURCE

HTTPS://WWW.GEHEALTHCARE.COM/PRODUCTS/COMPUTED-TOMOGRAPHY



Medical Imaging

Can be efficiently controlled by the FPGAs on the Control Board (along with other ICs such as
Microcontroller, Memory, DSP)

Adjusts tube voltage (kV), current (mA), and exposure time (s) to ensure proper X-ray quality
and quantity

Adjusting these parameters optimizes image quality

Proper settings reduce patient radiation exposure

CREDIT TO ORIGINAL SOURCE 68




Tools and Courses

HDL Simulator:
https://edaplayground.com/

https://quicksilicon.in/course/rtl-desigsn/module/sequence-generator

Courses and Webinars:

Coursera

https://www.doulos.com/events/webinars/deep-learning-with-fpgas/

CREDIT TO ORIGINAL SOURCE 69



https://edaplayground.com/
https://quicksilicon.in/course/rtl-design/module/sequence-generator
https://www.doulos.com/events/webinars/deep-learning-with-fpgas/

Q&A




